Package: SuperLearner 2.0-30-9000
SuperLearner: Super Learner Prediction
Implements the super learner prediction method and contains a library of prediction algorithms to be used in the super learner.
Authors:
SuperLearner_2.0-30-9000.tar.gz
SuperLearner_2.0-30-9000.zip(r-4.5)SuperLearner_2.0-30-9000.zip(r-4.4)SuperLearner_2.0-30-9000.zip(r-4.3)
SuperLearner_2.0-30-9000.tgz(r-4.4-any)SuperLearner_2.0-30-9000.tgz(r-4.3-any)
SuperLearner_2.0-30-9000.tar.gz(r-4.5-noble)SuperLearner_2.0-30-9000.tar.gz(r-4.4-noble)
SuperLearner_2.0-30-9000.tgz(r-4.4-emscripten)SuperLearner_2.0-30-9000.tgz(r-4.3-emscripten)
SuperLearner.pdf |SuperLearner.html✨
SuperLearner/json (API)
NEWS
# Install 'SuperLearner' in R: |
install.packages('SuperLearner', repos = c('https://ledell.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ecpolley/superlearner/issues
Last updated 9 months agofrom:8b521abf05. Checks:OK: 3 NOTE: 4. Indexed: no.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 01 2024 |
R-4.5-win | NOTE | Nov 01 2024 |
R-4.5-linux | NOTE | Nov 01 2024 |
R-4.4-win | NOTE | Nov 01 2024 |
R-4.4-mac | NOTE | Nov 01 2024 |
R-4.3-win | OK | Nov 01 2024 |
R-4.3-mac | OK | Nov 01 2024 |
Exports:Allcoef.CV.SuperLearnercoef.SuperLearnercreate.Learnercreate.SL.xgboostCV.SuperLearnerCVFoldslistWrappersmcSuperLearnermethod.AUCmethod.CC_LSmethod.CC_nloglikmethod.NNloglikmethod.NNLSmethod.NNLS2method.templateplot.CV.SuperLearnerpredict.SL.bartMachinepredict.SL.bayesglmpredict.SL.biglassopredict.SL.caretpredict.SL.cforestpredict.SL.earthpredict.SL.gampredict.SL.gbmpredict.SL.glmpredict.SL.glmnetpredict.SL.ipredbaggpredict.SL.kernelKnnpredict.SL.knnpredict.SL.ksvmpredict.SL.ldapredict.SL.leekassopredict.SL.lmpredict.SL.loesspredict.SL.logregpredict.SL.meanpredict.SL.nnetpredict.SL.nnlspredict.SL.polymarspredict.SL.qdapredict.SL.randomForestpredict.SL.rangerpredict.SL.ridgepredict.SL.rpartpredict.SL.speedglmpredict.SL.speedlmpredict.SL.steppredict.SL.stepAICpredict.SL.svmpredict.SL.templatepredict.SL.xgboostpredict.SuperLearnerprint.CV.SuperLearnerprint.summary.CV.SuperLearnerprint.SuperLearnerrecombineCVSLrecombineSLSampleSplitSuperLearnerscreen.corPscreen.corRankscreen.glmnetscreen.randomForestscreen.SISscreen.templatescreen.ttestSL.bartMachineSL.bayesglmSL.biglassoSL.caretSL.caret.rpartSL.cforestSL.earthSL.gamSL.gbmSL.glmSL.glm.interactionSL.glmnetSL.ipredbaggSL.kernelKnnSL.knnSL.ksvmSL.ldaSL.leekassoSL.lmSL.loessSL.logregSL.meanSL.nnetSL.nnlsSL.polymarsSL.qdaSL.randomForestSL.rangerSL.ridgeSL.rpartSL.rpartPruneSL.speedglmSL.speedlmSL.stepSL.step.forwardSL.step.interactionSL.stepAICSL.svmSL.templateSL.xgboostsnowSuperLearnersummary.CV.SuperLearnerSuperLearnerSuperLearner.controlSuperLearner.CV.controlSuperLearnerDocsSuperLearnerNewstrimLogitwrite.method.templatewrite.screen.templatewrite.SL.template
Dependencies:bitopscaToolscvAUCdata.tablegplotsgtoolsKernSmoothnnlsROCR
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Factory for learner wrappers | create.Learner |
Factory for XGBoost SL wrappers | create.SL.xgboost |
Function to get V-fold cross-validated risk estimate for super learner | coef.CV.SuperLearner CV.SuperLearner print.CV.SuperLearner |
Generate list of row numbers for each fold in the cross-validation | CVFolds |
list all wrapper functions in SuperLearner | listWrappers |
Graphical display of the V-fold CV risk estimates | plot.CV.SuperLearner |
bartMachine prediction | predict.SL.bartMachine |
Prediction wrapper for SL.biglasso | predict.SL.biglasso |
Prediction for SL.glm | predict.SL.glm |
Prediction for an SL.glmnet object | predict.SL.glmnet |
Prediction for SL.kernelKnn | predict.SL.kernelKnn |
Prediction for SL.ksvm | predict.SL.ksvm |
Prediction wrapper for SL.lda | predict.SL.lda |
Prediction for SL.lm | predict.SL.lm |
Prediction wrapper for SL.qda | predict.SL.qda |
Prediction wrapper for ranger random forests | predict.SL.ranger |
Prediction for SL.speedglm | predict.SL.speedglm |
Prediction for SL.speedlm | predict.SL.speedlm |
XGBoost prediction on new data | predict.SL.xgboost |
Predict method for SuperLearner object | predict.SuperLearner |
Recombine a CV.SuperLearner fit using a new metalearning method | recombineCVSL |
Recombine a SuperLearner fit using a new metalearning method | recombineSL |
Super Learner Prediction Function | SampleSplitSuperLearner |
Wrapper for bartMachine learner | SL.bartMachine |
SL wrapper for biglasso | SL.biglasso |
cforest party | SL.cforest |
Wrapper for glm | SL.glm |
Elastic net regression, including lasso and ridge | SL.glmnet |
SL wrapper for KernelKNN | SL.kernelKnn |
Wrapper for Kernlab's SVM algorithm | SL.ksvm |
SL wrapper for MASS:lda | SL.lda |
Wrapper for lm | SL.lm |
SL wrapper for MASS:qda | SL.qda |
SL wrapper for ranger | SL.ranger |
Wrapper for speedglm | SL.speedglm |
Wrapper for speedlm | SL.speedlm |
XGBoost SuperLearner wrapper | SL.xgboost |
Summary Function for Cross-Validated Super Learner | print.summary.CV.SuperLearner summary.CV.SuperLearner |
Super Learner Prediction Function | coef.SuperLearner mcSuperLearner print.SuperLearner snowSuperLearner SuperLearner |
Control parameters for the SuperLearner | SuperLearner.control |
Control parameters for the cross validation steps in 'SuperLearner' | SuperLearner.CV.control |
Show the NEWS file for the SuperLearner package | SuperLearnerDocs SuperLearnerNews |
truncated-probabilities logit transformation | trimLogit |
Method to estimate the coefficients for the super learner | method.AUC method.CC_LS method.CC_nloglik method.NNloglik method.NNLS method.NNLS2 method.template write.method.template |
screening algorithms for SuperLearner | All screen.corP screen.corRank screen.glmnet screen.randomForest screen.SIS screen.template screen.ttest write.screen.template |
Wrapper functions for prediction algorithms in SuperLearner | predict.SL.bayesglm predict.SL.caret predict.SL.cforest predict.SL.earth predict.SL.gam predict.SL.gbm predict.SL.ipredbagg predict.SL.knn predict.SL.leekasso predict.SL.loess predict.SL.logreg predict.SL.mean predict.SL.nnet predict.SL.nnls predict.SL.polymars predict.SL.randomForest predict.SL.ridge predict.SL.rpart predict.SL.step predict.SL.stepAIC predict.SL.svm predict.SL.template SL.bayesglm SL.caret SL.caret.rpart SL.earth SL.gam SL.gbm SL.glm.interaction SL.ipredbagg SL.knn SL.leekasso SL.loess SL.logreg SL.mean SL.nnet SL.nnls SL.polymars SL.randomForest SL.ridge SL.rpart SL.rpartPrune SL.step SL.step.forward SL.step.interaction SL.stepAIC SL.svm SL.template write.SL.template |